Effects of hypoxia on freshwater mussels

Brianna Kaiser and Chris Barnhart Missouri State University

Factors affecting dissolved oxygen (DO)

- Temperature
- Sources: aquatic photosynthesis, reaeration
- Sinks: metabolism and chemical oxidation in water (BOD) and in sediment (SOD)
- Groundwater/surface water mixing
- Hypolimnetic release from reservoirs

DO in air-saturated water vs. temperature

DO in stream beds

- Mussels burrow to variable depth and are exposed to interstitial water.
- Hyporheic DO is lower and more variable than water column DO
- Influences include flow, sediment particle size, SOD

Water movement through hyporheic zone of a streambed

A: downwelling B: upwelling

DO vs depth and particle size in streambeds

11 studies reviewed by Mallard & Hervant (1999)

Sediment D.O. at 1 cm depth along 3 transects in a prairie stream in Kansas (arrows = anoxia)

Kemp & Dodds 2001 JNABS

Where are the mussels?

- Adults generally keep siphons at the sediment surface but may bury up to 5-10 cm below surface.
- Young juveniles are interstitial meiofauna that burrow 1 to several cm deep (Neves & Widlack 1987, Yeager, Cherry & Neves 1994)
- Adult and juvenile mussels are potentially affected by both interstitial and water column DO

Effects of hypoxia

- Limitation of aerobic metabolism (MO₂)
- Reduced growth rate
- Behavioral responses
- Mortality

Patterns of DO limitation of MO₂

Effect of DO and temperature on MO₂ of adult unionids.

- Better regulation at lower temperature
- Species/habitat differences

Chen et al. 2001

Effects of hypoxia

- Limitation of aerobic metabolism (MO₂)
- Reduced growth rate
- Behavioral responses
- Mortality

Salmonid growth vs. DO

Behavioral responses to hypoxia (Sparks and Strayer 1998 - *Elliptio*)

- Increased siphon extension
- Gaping
- Would not bury as deep
- Moved closer to the water inlet

Effects of hypoxia

- Limitation of aerobic metabolism (MO₂)
- Reduced growth rates
- Behavioral responses
- Mortality

Survivorship of Corbicula fluminea in chronic hypoxia (25° C)

Johnson and McMahon 1998

Survivorship of *Dreissena polymorpha* in chronic hypoxia (25° C)

Survival of juvenile unionids in chronic hypoxia

- 4 species of juveniles (0 to 3 mo) were exposed to hypoxia for up to 49 d at 20°C
- Juveniles were not fed
- Survival was assessed at 2-d intervals
- Determined mean days-death vs. DO

Regulating DO in the lab

Survival of 4 species of unionid juveniles vs. DO

Survival of 3 age classes of *L. reeveiana* vs.

Planned studies

- Hypoxia effects on growth of juveniles
- Influence of temperature on hypoxia tolerance
- Hypoxia tolerance of brooding females and brooded embryos

Marsupial gills

Gravid outer gill of flat floater

(Anodonta suborbiculata)

Gravid outer gill of squawfoot (Strophitus undulatus)

Hypoxia effects on brooding females and brooded embryos

- Marsupial gills are massive and may be poorly ventilated.
- Developing embryos in other aquatic species are typically highly sensitive to low DO.
- Females of some mussel species abort developing embryos when exposed to hypoxia.

Summary

- Mussels are exposed to interstitial water, where DO is often much lower than in the water column, where it is typically measured
- Adult mussels have limited ability to regulate oxygen consumption in hypoxia.
- DO LC₅₀ and LT₅₀ studies of unionids are lacking
- Young juvenile unionids showed reduced survival time below ~1mg/L at 20° C

Summary, continued

- Hypoxia effects on growth and reproduction have not been studied.
- Brooding females and developing embryos could be particularly susceptible to hypoxia.

Environmental evidence

- Buddensiek et al. (1993) found negative correlation of juvenile unionid distribution with sediment hypoxia
- Rebound of Unionids in Duck River after improvement of DO below Normandy Dam

Effect of ambient oxygen on ventilation rate and brood pouch oxygen. Embryos stage A-B.

Effect of ambient oxygen on ventilation rate and brood pouch oxygen. Hatchlings.

Brooding amphipod

Oxygen vs depth in marsupium (38 stage C embryos)

